Higher -order corrections $\& \mathbb{R}$ divergences

We'll now compute higher-order perturb betive corrections to the R-ratio. Well find that there corrections turn out to be unnericolly small. However, well encounter some interesting complications along the way, namely that the diegrems suffer from infrared (IR) divergences. Understanding their structure and cancellation helps us to design other, less inclusive variables. It also grimes the construction

Compute R-Ratio to $N L O ; O\left(\alpha_{s}\right)$

$$
\begin{aligned}
& \sigma\left(e^{+} e^{-} \rightarrow x\right) \\
& =\sigma\left(e^{+} e^{-} \rightarrow \bar{q} q\right)^{A} \\
& \\
& +\sigma\left(e^{+} e^{-} \rightarrow 9 \bar{q} g\right)^{B}+O\left(x_{s}^{2}\right)
\end{aligned}
$$

A.)

B.)

$$
\begin{array}{r}
\frac{1}{4} \sum_{\text {spins }}|m|^{2}=\frac{16 \pi}{Q^{2}} \sigma_{q \bar{q}}^{(0)} C_{\mp} \\
\frac{\left(p_{1} \cdot k\right)^{2}+\left(p_{2} \cdot k\right)^{2}+q^{2} p_{1} \cdot p_{2}}{p_{1} \cdot k} p_{2} \cdot k
\end{array}
$$

Amplitade diverges if $P_{1}\left\|k, P_{2}\right\| k$ or if $k \rightarrow 0$.

Parsmeterize:

$$
\begin{aligned}
& \left(p_{1}+p_{2}\right)^{2}=y_{3} q^{2} \\
& \left(p_{1}+k\right)^{2}=y_{2} q^{2}=2 p_{1} \cdot k \\
& \left(p_{2}+k\right)^{2}=y_{1} q^{2}
\end{aligned}
$$

In the CMS syotem, we hove

$$
\begin{aligned}
& q^{\mu}=(Q, \overrightarrow{0})=p_{1}^{r}+p_{2}^{r}+k^{r} \\
& y_{i}=1-\frac{2 E_{i}}{Q}=0 \ldots 1 \quad Q=\sqrt{q^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Note: } \\
& \begin{aligned}
\left(p_{1}+p_{2}\right)^{2}=(q-k)^{2} & =Q^{2}-2 Q E_{3}^{k_{0}} \\
& =Q^{2}\left(1-\frac{2 E_{3}}{Q}\right) \\
& =Q^{2} \tilde{y_{3}}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
y_{1}+y_{2}+y_{3} & =3-\frac{2(\overbrace{E_{1}+E_{2}+E_{3}}^{Q})}{Q} \\
& =3-2=1 \\
\int d \pi_{3} & =\frac{9^{2}}{128 \pi^{3}} \int_{0}^{1} d y_{1} \int_{0}^{1-y_{1}} d y_{2}
\end{aligned}
$$

Cross section tecones

$$
\begin{aligned}
& \sigma_{q \bar{q} g}= \sigma_{a \overline{9}}^{(0)} \frac{\alpha_{s} c_{F}}{\pi} \\
& \frac{\int_{0}^{1} d y_{1} \int_{0}^{1-y_{1}} d y_{2}}{\frac{4 y_{3}+2\left(y_{1}^{2}+y_{2}^{2}\right)}{y \cdot y_{2}}}
\end{aligned}
$$

Divergent integral!

Perform the entire computation in $d=4-2 \varepsilon$. Use ε to regnkrige \mathbb{R} divergencies.

$$
\begin{aligned}
P S_{3}= & \int \frac{d^{d-1} p_{1}}{2 E_{1}(2 \pi)^{d-1}} \int \frac{d^{d-1} p_{2}}{2 E_{2}(2 \pi)^{d-1}} \int \frac{d^{d-1} k}{2 E_{3}(2 \pi)^{d-1}} \\
& (2 \pi)^{d} d^{(d)}\left(q-p_{1}-p_{2}-k\right)
\end{aligned}
$$

we can immediately integrate over k to set

$$
\begin{array}{r}
P S_{3}=\frac{1}{8(2 \pi)^{2 d-3}} \int \frac{d^{d-1} P_{1} \int \frac{d^{d-1} P_{2}}{E_{1}}}{E_{2}} \\
\quad x \delta\left(Q-E_{1}-E_{2}-E_{3}\right)
\end{array}
$$

By moneutum conservation $\vec{k}=-\vec{p}_{1}-\vec{p}_{2}$
and $E_{i}=\left|\vec{p}_{i}\right|$ since the particles are all massless. We thus have

$$
E_{3}^{2}=\left(\vec{p}_{1}+\vec{p}_{2}\right)^{2}=E_{1}^{2}+E_{2}^{2}+2 E_{1} E_{2} \cos \theta
$$

By sherical symmetry, we con choose

$$
p_{1}^{n}=E_{1}(1,1,0, \ldots)
$$

For p_{2}^{\prime} we choose

$$
p_{2}^{r}=E_{2}\left(1, \cos \theta, \sin \theta \vec{n}_{d-2}\right)
$$

we then have

$$
\begin{aligned}
P S_{3}= & \frac{1}{8(2 \pi)^{2 d-3}} \int_{0}^{Q / 2} d E_{1} E_{1}^{d-3} \int d \Omega_{d-1} \\
& \cdot \int_{0}^{Q / 2} d E_{1} E_{2} E_{2}^{d-3} \int_{0}^{\pi} d \theta|\sin \theta|^{d-3} \int d \Omega_{d-2}
\end{aligned}
$$

$$
\cdot \frac{1}{E_{3}} \delta\left(Q-E_{1}-E_{2}-E_{3}\right)
$$

Now set $E_{1}=\left(1-y_{1}\right)^{Q / 2} ; E_{2}=\left(1-y_{2}\right)^{Q / 2}$ and integrate over θ.
Γ Note:

$$
\begin{aligned}
& \int d \Omega^{d-1}=\int d^{d-1} \vec{n} \delta\left(1-\vec{n}^{2}\right)= \\
& \begin{aligned}
& \int_{-1}^{1} d \cos \theta|\sin \theta|^{d-2} \int d d^{d-2} \vec{n} \delta(\overbrace{\left.1-\cos ^{2} \theta-\sin ^{2} \theta \vec{n}_{d-2}^{2}\right)}^{\sin ^{2} \theta}) \\
&=\int_{-1}^{1} d \cos \theta|\sin \theta|^{d-4} \int d^{d-2} \vec{n} \delta\left(1-\vec{n}_{d-2}^{2}\right) \\
& \int d \Omega_{d}=\frac{2 \pi^{d / 2}}{\Gamma(d / 2)}
\end{aligned}
\end{aligned}
$$

see the notebook R-retio-NLo.nb for a step-by-step computation of the three-particle phase space.

The result is

$$
\begin{array}{r}
P S_{3}=\frac{Q^{2}}{128 \pi^{3}}\left(\frac{4 \pi}{Q^{2}}\right)^{2 \varepsilon} \frac{1}{\Gamma(2-2 \varepsilon)} \int_{0}^{1} d y_{1} \int_{0}^{1-y_{1}} d y_{2} \\
\quad\left(y_{1} y_{2} y_{3}\right)^{-\varepsilon} \quad \text { witt } y_{3}=1-y_{2}-y_{1}
\end{array}
$$

To get the full d-dim result, we also heed to recompute $|M|^{2}$ in d-dimensions, since the fermion traces yeld factors of ε.

Combining the amplithole with PS_{3} and dividing by $\sigma_{\bar{q} \overline{9}}^{(0)}$ (in d-dim!), we get

$$
\begin{aligned}
& \sigma_{q \overline{9}}=\sigma_{a \bar{q}}^{(0)} \cdot \frac{\alpha_{5} C_{F}}{4 \pi \Gamma(1-\varepsilon)}\left(\frac{Q^{2}}{4 \pi \mu^{2}}\right)^{-\varepsilon} \\
& \cdot \int_{0}^{1} d y_{1} \int_{0}^{1-y_{1}} d y_{2}\left(y_{1} y_{2} y_{3}\right)^{-\varepsilon} \\
& x \frac{4\left(y_{3}-y_{1} y_{2} \varepsilon\right)+2(1-\varepsilon)\left(y_{1}^{2}+y_{2}^{2}\right)}{y, y_{2}}
\end{aligned}
$$

The next step is to perform the y-integrations. Simply performing them in d-dim is not easily possible, but one can also not yurt expand the integrand, tecanse of the divergencies,

The int egrets have the form:

$$
\begin{aligned}
& \int_{0}^{1} d y y^{-1-\varepsilon} f(y)=\int_{0}^{1} d y y^{-1-\varepsilon}(f(y)-f(0)) \\
& \text { regular fin }
\end{aligned}+\int_{0}^{1} d y y^{-1-\varepsilon} f(0)
$$

convergent, expend in ε
before integration
A bit more elegantly, one can wite

$$
\begin{array}{r}
y^{-1+\alpha}=\frac{1}{\alpha} \delta(y)+\sum_{n=0}^{\infty} \frac{\alpha^{n}}{n!}\left(\frac{\ln ^{n}(y)}{y}\right)_{+} \\
\\
\text {(exercise) }
\end{array}
$$

see the Notebook for the explicit computation.
$1 t$ is interesting to explore, where the singularities are coming from: if we go to $y_{1}=0$, then $E_{1}=Q / 2$. This is only possible if the other particles fly collinearly in the other direction:

In this situation y_{2} corresponds to the momentum friction carried by the collinear gluon. A physically well motivated way to compote the phese-epace integral is to sualyze it's soft \& callimeer limits.

The final result reads

$$
\begin{aligned}
\sigma_{q \overline{q g}}= & \sigma_{q \bar{q}}^{(0)} \frac{\alpha_{\delta} C_{F}}{4 \pi}\left(\frac{4 \pi e^{\gamma_{E}} \mu^{2}}{Q^{2}}\right)^{\varepsilon} \\
& \left\{\frac{4}{\varepsilon^{2}}+\frac{6}{\varepsilon}+19-\frac{7 \pi^{2}}{3}\right\}
\end{aligned}
$$

Next, we heed to comporte the virtual corrections $M_{a q}^{(1)}$. We need
 To extract z factor $\frac{z_{0 S}}{p}$

$$
\alpha\left(p^{2}\right)^{-\varepsilon}=0 \text { for } p^{2}=0 \text { ! }
$$

Note:

$$
\begin{aligned}
& \sigma_{9 \overline{9}}=|\operatorname{mos}+>m \beta z|^{2} \\
& =\left|M n^{(0)}+m^{(1)}\right|^{2} \\
& =m^{(0)} \\
& =\left|m^{(0)}\right|^{2}+m^{(0)} m^{(1)^{*}}+m^{(1)} m^{(0)^{*}} \\
& +O\left(\alpha_{s}^{2}\right) \\
& =\left|m^{(0)}\right|^{2}+2 m^{(0)} \operatorname{Re}\left(m^{(1)}\right) . \\
& =\sigma_{9 \overline{9}}^{(0)} \mathcal{L} 1+\frac{\alpha_{5} C_{F}}{4 \pi}\left(\frac{4 \pi e^{-\gamma E} \mu^{2}}{Q^{2}}\right)^{\Sigma} \\
& \left.\left[-\frac{4}{\varepsilon^{2}}-\frac{6}{\varepsilon}-16+\frac{7 \pi^{2}}{3}\right]\right\}
\end{aligned}
$$

Now we can finely add up

$$
\sigma\left(e^{+} e^{-} \rightarrow x\right)=\sigma_{q \bar{q}}+\sigma_{q 9 g}+O\left(\alpha_{s}^{2}\right)
$$

$$
=\sigma_{9 \overline{9}}^{(0)}\{1+\underbrace{3 C_{F} \frac{\alpha_{5}}{4 \pi}}_{3 \cdot \frac{4}{3} \cdot \frac{0.1}{12} \neq 0,03}\}
$$

A very small $\sim 3 \%$, tut finite result.

